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Why Would TRF Updates Be Useful?

• ITRF official products are released at intervals of 3-to-5 years

(see http://itrf.ensg.ign.fr/ )

• Frame Obsolescence, i.e. frame degradation with time [see e.g.

Blewitt, 2015]

• TRFs do not age well:

• Quakes, equipment changes at ITRF sites introduce station position

discontinuities and degrade the frame quality

• 3-to-5 years in between ITRF releases acceptable (?) tradeoff (new

releases are burdersome and somehow prohibitive for the analyses

centers, IGS/GNSS in particular, because of the entire reprocessing of

an ever-increasing dataset)

• Frequent Frame Updates instead of frequent ex-novo (and

impractical) Frame releases might alleviate obsolescence.
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Why Would TRF Updates Be Useful?

• To maintain the accuracy of ITRF-like terrestrial frames by updating

them as new data become available.

• To maintain the consistency of the Earth Orientation Parameters

(EOPs) with the updated terrestrial frames (EOPs get assimilated as

well when updating the TRF).

• To provide updates to the time series of geocentre motion (CM-CN)

based on the assimilation of new data.
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Global Space-Geodetic Network

Global Space-Geodetic Networks adopted in our proof of concept
(495 Stations with Observing History > 2.5 years)
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Dataset and Combination Setup

Dataset SNX Files from IGS,IVS,ILRS,IDS for ITRF2014

Network 495 Stations

Frame Type Time Series

Model Trend, Annual

Process Noise Station-Dependent Random Walk

Origin Quasi-Instantaneous CM (SLR)

Scale Quasi-Instantaneous SLR/VLBI

Orientation No-Net-Rotation to ITRF2008
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Combination Tests For our Proof of Concept
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Scatterplots of the WRMS Differences (Pred/Upd - Truth)
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GNSS Station at Iquique (Chile) – Updates
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Black dots are position observations, whereas red solid lines are KALREF-derived. Solid green vertical lines mark position offsets. Light

red-shaded envelopes represent 1 − σ error bars.



Correlations in Ground Deformation



Correlation Coefficients: GRACE and other data

GRACE equivalent water with atmos/ocean loading restored:

Last panel: GFZ surface fluid loading model data (Dill and Dobslaw 2013)

⇒ Some long-distance correlations may be noisy/inconsistent.





Joint TRF / CRF / EOP 
Determination



A two-level approach to VLBI terrestrial and 

celestial reference frames using both 

least-squares adjustment and Kalman filter 

algorithms 
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New concept for terrestrial reference frames

22017-12-11 B.Soja et al.: A two-level approach to VLBI terrestrial and celestial reference frames

DTRF2014

• Least-squares adjustment

• Input: normal equations

• Secular frame

• Optional loading 

displacement time series

JTRF2014

• Kalman filter + smoother

• Input: station coordinates + 

covariances

• Time series frame

New concept

• Least-squares adjustment

• Normal equations

• Secular frame

• Optional Kalman filter time 

series based on residuals 

of secular frame

[Seitz et al., 2016] [Abbondanza et al., 

2017]
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New concept for celestial reference frames
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ICRF2

• Least-squares adjustment

• Input: normal equations

• Constant frame

Kalman filter CRF

• Kalman filter + smoother

• Input: station coordinates + 

covariances

• Time series frame

New concept

• Least-squares adjustment

• Normal equations

• Constant frame

• Optional Kalman filter time 

series based on residuals 

of constant frame

[Fey et al., 2015] [Soja et al., 2017]
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Realizing the new concept

1. Single-session analysis to create normal equations

2. Computation of secular frames (global solution)

• NNT/NNR w.r.t. DTRF2014 and NNR w.r.t. ICRF2

• Two TRF solutions: linear & linear + annual + semi-annual

3. Apply secular frames in single-session analysis to estimate 

station and source coordinates

• Residuals w.r.t. secular frames

4. Feed residuals into Kalman filter and smoother to create

time series consistent with secular frame

• 6-parameter transformation to DTRF2014

• 3-parameter rotation to ICRF2
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VLBI data

• 1980 – 2016.5

• 5446 IVS-VLBI sessions 

• Secular frame

• 136 VLBI stations (22 used for datum definition)

• 4097 radio sources (1178 used for datum definition)

• Seasonal signals: only estimated for datum stations

• Time series frame

• 119 VLBI stations

• 822 radio sources 
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TRF solution examples

Algonquin Park, radial component TIGO Concepción, East component
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CRF solution examples

0119+115 (defining), declination 4C 39.25 (special handling), right asc.
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